Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44.705
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612890

RESUMO

The endoplasmic reticulum maintains proteostasis, which can be disrupted by oxidative stress, nutrient deprivation, hypoxia, lack of ATP, and toxicity caused by xenobiotic compounds, all of which can result in the accumulation of misfolded proteins. These stressors activate the unfolded protein response (UPR), which aims to restore proteostasis and avoid cell death. However, endoplasmic response-associated degradation (ERAD) is sometimes triggered to degrade the misfolded and unassembled proteins instead. If stress persists, cells activate three sensors: PERK, IRE-1, and ATF6. Glioma cells can use these sensors to remain unresponsive to chemotherapeutic treatments. In such cases, the activation of ATF4 via PERK and some proteins via IRE-1 can promote several types of cell death. The search for new antitumor compounds that can successfully and directly induce an endoplasmic reticulum stress response ranges from ligands to oxygen-dependent metabolic pathways in the cell capable of activating cell death pathways. Herein, we discuss the importance of the ER stress mechanism in glioma and likely therapeutic targets within the UPR pathway, as well as chemicals, pharmaceutical compounds, and natural derivatives of potential use against gliomas.


Assuntos
Estresse do Retículo Endoplasmático , Glioma , Humanos , Resposta a Proteínas não Dobradas , Retículo Endoplasmático , Glioma/tratamento farmacológico , Preparações Farmacêuticas
2.
J Cell Biol ; 223(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38558237

RESUMO

The p24 family of proteins have been regarded as cargo receptors for endoplasmic reticulum (ER) to Golgi transport; however, their precise functions have yet to be revealed. In this issue, Pastor-Pareja and colleagues (https://doi.org/10.1083/jcb.202309045) show that the interaction of these proteins with Tango1 is critical for their localization at the ER exit site (ERES) and efficient transport of secretory proteins in Drosophila.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto , Drosophila , Retículo Endoplasmático , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Drosophila/citologia , Drosophila/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Transporte Proteico/fisiologia , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
3.
CNS Neurosci Ther ; 30(4): e14707, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584329

RESUMO

AIMS: Mitochondria-associated endoplasmic reticulum membranes (MAMs) serve as a crucial bridge connecting the endoplasmic reticulum (ER) and mitochondria within cells. Vesicle-associated membrane protein-associated protein B (VAPB) and protein tyrosine phosphatase interacting protein 51 (PTPIP51) are responsible for the formation and stability of MAMs, which have been implicated in the pathogenesis of various diseases. However, the role of MAMs in ischemic stroke (IS) remains unclear. We aimed to investigate the role of MAMs tethering protein VAPB-PTPIP51 in experimental cerebral ischemia. METHODS: We simulated cerebral ischemia-reperfusion injury (CIRI) by using a mouse middle cerebral artery occlusion (MCAO) model. RESULTS: We observed a decrease in VAPB-PTPIP51 expression in the brain tissue. Our findings suggested compromised MAMs after MCAO, as a decreased mitochondria-ER contact (MERC) coverage and an increased distance were observed through the transmission electron microscope (TEM). Upon VAPB or PTPIP51 knockdown, the damage to MAMs was exacerbated, accompanied by excessive autophagy activation and increased reactive oxygen species (ROS) production, resulting in an enlarged infarct area and exacerbated neurological deficits. Notably, we observed that this damage was concomitant with the inhibition of the PI3K/AKT/mTOR pathway and was successfully mitigated by the treatment with the PI3K activator. CONCLUSIONS: Our findings suggest that the downregulation of VAPB-PTPIP51 expression after IS mediates structural damage to MAMs. This may exacerbate CIRI by inhibiting the PI3K pathway and activating autophagy, thus providing new therapeutic targets for IS.


Assuntos
AVC Isquêmico , Traumatismo por Reperfusão , Humanos , AVC Isquêmico/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Mitocondriais , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Traumatismo por Reperfusão/metabolismo , Autofagia , Proteínas de Transporte Vesicular/metabolismo
4.
Sci Rep ; 14(1): 8263, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594333

RESUMO

Oocytes of both vertebrates and invertebrates often contain an intricate organelle assemblage, termed the Balbiani body (Bb). It has previously been suggested that this assemblage is involved in the delivery of organelles and macromolecules to the germ plasm, formation of oocyte reserve materials, and transfer of mitochondria to the next generation. To gain further insight into the function of the Bb, we performed a series of analyses and experiments, including computer-aided 3-dimensional reconstructions, detection of DNA (mtDNA) synthesis as well as immunolocalization studies. We showed that in orthopteran Meconema meridionale, the Bb comprises a network of mitochondria and perinuclear nuage aggregations. As oogenesis progresses, the network expands filling almost entire ooplasm, then partitions into several smaller entities, termed micro-networks, and ultimately into individual mitochondria. As in somatic cells, this process involves microfilaments and elements of endoplasmic reticulum. We showed also that at least some of the individual mitochondria are surrounded by phagophores and eliminated via mitophagy. These findings support the idea that the Bb is implicated in the multiplication and selective elimination of (defective) mitochondria and therefore may participate in the transfer of undamaged (healthy) mitochondria to the next generation.


Assuntos
Oócitos , Ortópteros , Animais , Oócitos/metabolismo , Oogênese/genética , Mitocôndrias/genética , Insetos , Retículo Endoplasmático
5.
EMBO Rep ; 25(4): 2071-2096, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38565738

RESUMO

Most mitochondrial proteins are synthesized on cytosolic ribosomes and imported into mitochondria in a post-translational reaction. Mitochondrial precursor proteins which use the ER-SURF pathway employ the surface of the endoplasmic reticulum (ER) as an important sorting platform. How they reach the mitochondrial import machinery from the ER is not known. Here we show that mitochondrial contact sites play a crucial role in the ER-to-mitochondria transfer of precursor proteins. The ER mitochondria encounter structure (ERMES) and Tom70, together with Djp1 and Lam6, are part of two parallel and partially redundant ER-to-mitochondria delivery routes. When ER-to-mitochondria transfer is prevented by loss of these two contact sites, many precursors of mitochondrial inner membrane proteins are left stranded on the ER membrane, resulting in mitochondrial dysfunction. Our observations support an active role of the ER in mitochondrial protein biogenesis.


Assuntos
Mitocôndrias , Proteínas de Saccharomyces cerevisiae , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Transporte Proteico , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
J Alzheimers Dis ; 98(4): 1243-1275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578892

RESUMO

The "amyloid cascade" hypothesis of Alzheimer's disease (AD) pathogenesis invokes the accumulation in the brain of plaques (containing the amyloid-ß protein precursor [AßPP] cleavage product amyloid-ß [Aß]) and tangles (containing hyperphosphorylated tau) as drivers of pathogenesis. However, the poor track record of clinical trials based on this hypothesis suggests that the accumulation of these peptides is not the only cause of AD. Here, an alternative hypothesis is proposed in which the AßPP cleavage product C99, not Aß, is the main culprit, via its role as a regulator of cholesterol metabolism. C99, which is a cholesterol sensor, promotes the formation of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM), a cholesterol-rich lipid raft-like subdomain of the ER that communicates, both physically and biochemically, with mitochondria. We propose that in early-onset AD (EOAD), MAM-localized C99 is elevated above normal levels, resulting in increased transport of cholesterol from the plasma membrane to membranes of intracellular organelles, such as ER/endosomes, thereby upregulating MAM function and driving pathology. By the same token, late-onset AD (LOAD) is triggered by any genetic variant that increases the accumulation of intracellular cholesterol that, in turn, boosts the levels of C99 and again upregulates MAM function. Thus, the functional cause of AD is upregulated MAM function that, in turn, causes the hallmark disease phenotypes, including the plaques and tangles. Accordingly, the MAM hypothesis invokes two key interrelated elements, C99 and cholesterol, that converge at the MAM to drive AD pathogenesis. From this perspective, AD is, at bottom, a lipid disorder.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Colesterol/metabolismo
7.
J Physiol ; 602(8): 1637-1654, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38625711

RESUMO

The eukaryotic cell is highly compartmentalized with organelles. Owing to their function in transporting metabolites, metabolic intermediates and byproducts of metabolic activity, organelles are important players in the orchestration of cellular function. Recent advances in optical methods for interrogating the different aspects of organellar activity promise to revolutionize our ability to dissect cellular processes with unprecedented detail. The transport activity of organelles is usually coupled to the transport of charged species; therefore, it is not only associated with the metabolic landscape but also entangled with membrane potentials. In this context, the targeted expression of fluorescent probes for interrogating organellar membrane potential (Ψorg) emerges as a powerful approach, offering less-invasive conditions and technical simplicity to interrogate cellular signalling and metabolism. Different research groups have made remarkable progress in adapting a variety of optical methods for measuring and monitoring Ψorg. These approaches include using potentiometric dyes, genetically encoded voltage indicators, hybrid fluorescence resonance energy transfer sensors and photoinduced electron transfer systems. These studies have provided consistent values for the resting potential of single-membrane organelles, such as lysosomes, the Golgi and the endoplasmic reticulum. We can foresee the use of dynamic measurements of Ψorg to study fundamental problems in organellar physiology that are linked to serious cellular disorders. Here, we present an overview of the available techniques, a survey of the resting membrane potential of internal membranes and, finally, an open-source mathematical model useful to interpret and interrogate membrane-bound structures of small volume by using the lysosome as an example.


Assuntos
Lisossomos , Organelas , Potenciais da Membrana , Organelas/metabolismo , Lisossomos/metabolismo , Retículo Endoplasmático/metabolismo , Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo
8.
Sci Adv ; 10(16): eadl3063, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640234

RESUMO

The organelle network is a key factor in the repair and regeneration of lesion. However, effectively intervening in the organelle network which has complex interaction mechanisms is challenging. In this study, on the basis of electromagnetic laws, we constructed a biomaterial-based physical/chemical restraint device. This device was designed to jointly constrain electrical and biological factors in a conductive screw-threaded microneedle (ST-needle) system, identifying dual positioning regulation of the organelle network. The unique physical properties of this system could accurately locate the lesion and restrict the current path to the lesion cells through electromagnetic laws, and dynamic Van der Waals forces were activated to release functionalized hydrogel microspheres. Subsequently, the mitochondria-endoplasmic reticulum (ER) complex was synergistically targeted by increasing mitochondrial ATP supply to the ER via electrical stimulation and by blocking calcium current from the ER to the mitochondria using microspheres, and then the life activity of the lesion cells was effectively restored.


Assuntos
Retículo Endoplasmático , Mitocôndrias , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , China
9.
Sci Adv ; 10(16): eadl0263, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640246

RESUMO

The in situ generation of H2O2 in cells in response to external stimulation has exceptional advantages in modulating intracellular Ca2+ dynamics, including high controllability and biological safety, but has been rarely explored. Here, we develop photocatalyst-based metal-organic frameworks (DCSA-MOFs) to modulate Ca2+ responses in cells, multicellular spheroids, and organs. By virtue of the efficient photocatalytic oxygen reduction to H2O2 without sacrificial agents, photoexcited DCSA-MOFs can rapidly trigger Ca2+ outflow from the endoplasmic reticulum with single-cell precision in a repeatable and controllable manner, enabling the propagation of intercellular Ca2+ waves (ICW) over long distances in two-dimensional and three-dimensional cell cultures. After photoexcitation, ICWs induced by DCSA-MOFs can activate neural activities in the optical tectum of tadpoles and thighs of spinal frogs, eliciting the corresponding motor behaviors. Our study offers a versatile optical nongenetic modulation technique that enables remote, repeatable, and controlled manipulation of cellular and animal behaviors.


Assuntos
Sinalização do Cálcio , Peróxido de Hidrogênio , Animais , Peróxido de Hidrogênio/metabolismo , Junções Comunicantes/metabolismo , Retículo Endoplasmático , Comportamento Animal
10.
Protein Sci ; 33(4): e4949, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38511500

RESUMO

Primary defects in folding of mutant proinsulin can cause dominant-negative proinsulin accumulation in the endoplasmic reticulum (ER), impaired anterograde proinsulin trafficking, perturbed ER homeostasis, diminished insulin production, and ß-cell dysfunction. Conversely, if primary impairment of ER-to-Golgi trafficking (which also perturbs ER homeostasis) drives misfolding of nonmutant proinsulin-this might suggest bi-directional entry into a common pathological phenotype (proinsulin misfolding, perturbed ER homeostasis, and deficient ER export of proinsulin) that can culminate in diminished insulin storage and diabetes. Here, we've challenged ß-cells with conditions that impair ER-to-Golgi trafficking, and devised an accurate means to assess the relative abundance of distinct folded/misfolded forms of proinsulin using a novel nonreducing SDS-PAGE/immunoblotting protocol. We confirm abundant proinsulin misfolding upon introduction of a diabetogenic INS mutation, or in the islets of db/db mice. Whereas blockade of proinsulin trafficking in Golgi/post-Golgi compartments results in intracellular accumulation of properly-folded proinsulin (bearing native disulfide bonds), impairment of ER-to-Golgi trafficking (regardless whether such impairment is achieved by genetic or pharmacologic means) results in decreased native proinsulin with more misfolded proinsulin. Remarkably, reversible ER-to-Golgi transport defects (such as treatment with brefeldin A or cellular energy depletion) upon reversal quickly restore the ER folding environment, resulting in the disappearance of pre-existing misfolded proinsulin while preserving proinsulin bearing native disulfide bonds. Thus, proper homeostatic balance of ER-to-Golgi trafficking is linked to a more favorable proinsulin folding (as well as trafficking) outcome.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Camundongos , Animais , Proinsulina/genética , Proinsulina/química , Dobramento de Proteína , Insulina/química , Retículo Endoplasmático , Homeostase , Dissulfetos/química
11.
Nat Cell Biol ; 26(3): 378-392, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429475

RESUMO

The endoplasmic reticulum (ER) employs a diverse proteome landscape to orchestrate many cellular functions, ranging from protein and lipid synthesis to calcium ion flux and inter-organelle communication. A case in point concerns the process of neurogenesis, where a refined tubular ER network is assembled via ER shaping proteins into the newly formed neuronal projections to create highly polarized dendrites and axons. Previous studies have suggested a role for autophagy in ER remodelling, as autophagy-deficient neurons in vivo display axonal ER accumulation within synaptic boutons, and the membrane-embedded ER-phagy receptor FAM134B has been genetically linked with human sensory and autonomic neuropathy. However, our understanding of the mechanisms underlying selective removal of the ER and the role of individual ER-phagy receptors is limited. Here we combine a genetically tractable induced neuron (iNeuron) system for monitoring ER remodelling during in vitro differentiation with proteomic and computational tools to create a quantitative landscape of ER proteome remodelling via selective autophagy. Through analysis of single and combinatorial ER-phagy receptor mutants, we delineate the extent to which each receptor contributes to both the magnitude and selectivity of ER protein clearance. We define specific subsets of ER membrane or lumenal proteins as preferred clients for distinct receptors. Using spatial sensors and flux reporters, we demonstrate receptor-specific autophagic capture of ER in axons, and directly visualize tubular ER membranes within autophagosomes in neuronal projections by cryo-electron tomography. This molecular inventory of ER proteome remodelling and versatile genetic toolkit provide a quantitative framework for understanding the contributions of individual ER-phagy receptors for reshaping ER during cell state transitions.


Assuntos
Proteoma , Proteômica , Humanos , Retículo Endoplasmático/metabolismo , Autofagia/fisiologia , Estresse do Retículo Endoplasmático , Proteínas de Transporte/metabolismo , Neurogênese
12.
PLoS One ; 19(3): e0289395, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38437228

RESUMO

The detection of temperature by the human sensory system is life-preserving and highly evolutionarily conserved. Platelets are sensitive to temperature changes and are activated by a decrease in temperature, akin to sensory neurons. However, the molecular mechanism of this temperature-sensing ability is unknown. Yet, platelet activation by temperature could contribute to numerous clinical sequelae, most importantly to reduced quality of ex vivo-stored platelets for transfusion. In this multidisciplinary study, we present evidence for the expression of the temperature-sensitive ion channel transient receptor potential cation channel subfamily member 8 (TRPM8) in human platelets and precursor cells. We found the TRPM8 mRNA and protein in MEG-01 cells and platelets. Inhibition of TRPM8 prevented temperature-induced platelet activation and shape change. However, chemical agonists of TRPM8 did not seem to have an acute effect on platelets. When exposing platelets to below-normal body temperature, we detected a cytosolic calcium increase which was independent of TRPM8 but was completely dependent on the calcium release from the endoplasmic reticulum. Because of the high interindividual variability of TRPM8 expression, a population-based approach should be the focus of future studies. Our study suggests that the cold response of platelets is complex and TRPM8 appears to play a role in early temperature-induced activation of platelets, while other mechanisms likely contribute to later stages of temperature-mediated platelet response.


Assuntos
Cálcio , Canais de Cátion TRPM , Humanos , Temperatura Baixa , Cálcio da Dieta , Retículo Endoplasmático , Células Receptoras Sensoriais , Canais de Cátion TRPM/genética , Proteínas de Membrana
13.
J Virol ; 98(4): e0157523, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38483167

RESUMO

As for all single-stranded, positive-sense RNA (+RNA) viruses, intracellular RNA synthesis relies on extensive remodeling of host cell membranes that leads to the formation of specialized structures. In the case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus causing COVID-19, endoplasmic reticulum membranes are modified, resulting in the formation of double-membrane vesicles (DMVs), which contain the viral dsRNA intermediate and constitute membrane-bound replication organelles. The non-structural and transmembrane protein nsp3 is a key player in the biogenesis of DMVs and, therefore, represents an interesting antiviral target. However, as an integral transmembrane protein, it is challenging to express for structural biology. The C-terminus of nsp3 encompasses all the membrane-spanning, -interacting, and -remodeling elements. By using a cell-free expression system, we successfully produced the C-terminal region of nsp3 (nsp3C) and reconstituted purified nsp3C into phospholipid nanodiscs, opening the way for structural studies. Negative-stain transmission electron microscopy revealed the presence of nsp3C oligomers very similar to the region abutting and spanning the membrane on the cytosolic side of DMVs in a recent subtomogram average of the SARS-CoV-2 nsp3-4 pore (1). AlphaFold-predicted structural models fit particularly well with our experimental data and support a pore-forming hexameric assembly. Altogether, our data give unprecedented clues to understand the structural organization of nsp3, the principal component that shapes the molecular pore that spans the DMVs and is required for the export of RNA in vivo. IMPORTANCE: Membrane remodeling is at the heart of intracellular replication for single-stranded, positive-sense RNA viruses. In the case of coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), this leads to the formation of a network of double-membrane vesicles (DMVs). Targeting DMV biogenesis offers promising prospects for antiviral therapies. This requires a better understanding of the molecular mechanisms and proteins involved. Three non-structural proteins (nsp3, nsp4, and nsp6) direct the intracellular membrane rearrangements upon SARS-CoV-2 infection. All of them contain transmembrane helices. The nsp3 component, the largest and multi-functional protein of the virus, plays an essential role in this process. Aiming to understand its structural organization, we used a cell-free protein synthesis assay to produce and reconstitute the C-terminal part of nsp3 (nsp3C) including transmembrane domains into phospholipid nanodiscs. Our work reveals the oligomeric organization of one key player in the biogenesis of SARS-CoV-2 DMVs, providing basis for the design of future antiviral strategies.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Retículo Endoplasmático/metabolismo , RNA , Fosfolipídeos , Antivirais , Replicação Viral
14.
Cell Rep ; 43(3): 113885, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38457337

RESUMO

Amyotrophic lateral sclerosis damages proteostasis, affecting spinal and upper motor neurons earlier than a subset of cranial motor neurons. To aid disease understanding, we exposed induced cranial and spinal motor neurons (iCrMNs and iSpMNs) to proteotoxic stress, under which iCrMNs showed superior survival, quantifying the transcriptome and proteome for >8,200 genes at 0, 12, and 36 h. Two-thirds of the proteome showed cell-type differences. iSpMN-enriched proteins related to DNA/RNA metabolism, and iCrMN-enriched proteins acted in the endoplasmic reticulum (ER)/ER chaperone complex, tRNA aminoacylation, mitochondria, and the plasma/synaptic membrane, suggesting that iCrMNs expressed higher levels of proteins supporting proteostasis and neuronal function. When investigating the increased proteasome levels in iCrMNs, we showed that the activity of the 26S proteasome, but not of the 20S proteasome, was higher in iCrMNs than in iSpMNs, even after a stress-induced decrease. We identified Ublcp1 as an iCrMN-specific regulator of the nuclear 26S activity.


Assuntos
Esclerose Amiotrófica Lateral , Proteostase , Humanos , Proteostase/fisiologia , Proteoma/metabolismo , Neurônios Motores/metabolismo , Esclerose Amiotrófica Lateral/genética , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático
15.
Nat Commun ; 15(1): 2793, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555357

RESUMO

Division of intracellular organelles often correlates with additional membrane wrapping, e.g., by the endoplasmic reticulum or the outer mitochondrial membrane. Such wrapping plays a vital role in proteome and lipidome organization. However, how an extra membrane impacts the mechanics of the division has not been investigated. Here we combine fluorescence and cryo-electron microscopy experiments with self-consistent field theory to explore the stress-induced instabilities imposed by membrane wrapping in a simple double-membrane tubular system. We find that, at physiologically relevant conditions, the outer membrane facilitates an alternative pathway for the inner-tube fission through the formation of a transient contact (hemi-fusion) between both membranes. A detailed molecular theory of the fission pathways in the double membrane system reveals the topological complexity of the process, resulting both in leaky and leakless intermediates, with energies and topologies predicting physiological events.


Assuntos
Retículo Endoplasmático , Membranas Mitocondriais , Microscopia Crioeletrônica , Membranas Mitocondriais/metabolismo , Retículo Endoplasmático/metabolismo , Proteoma/metabolismo
16.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542170

RESUMO

The communication between mitochondria and the endoplasmic reticulum (ER) is facilitated by a dynamic membrane structure formed by protein complexes known as mitochondria-associated membranes (MAMs). The structural and functional integrity of MAMs is crucial for insulin signal transduction, relying heavily on their regulation of intracellular calcium homeostasis, lipid homeostasis, mitochondrial quality control, and endoplasmic reticulum stress (ERS). This article reviews recent research findings, suggesting that exercise may promote the remodeling of MAMs structure and function by modulating the expression of molecules associated with their structure and function. This, in turn, restores cellular homeostasis and ultimately contributes to the amelioration of insulin resistance (IR). These insights provide additional possibilities for the study and treatment of insulin resistance-related metabolic disorders such as obesity, diabetes, fatty liver, and atherosclerosis.


Assuntos
Resistência à Insulina , Humanos , Resistência à Insulina/fisiologia , 60482 , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo , Homeostase , Estresse do Retículo Endoplasmático/fisiologia
17.
Nat Commun ; 15(1): 2760, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553448

RESUMO

The cGAS-STING pathway plays a crucial role in anti-tumoral responses by activating inflammation and reprogramming the tumour microenvironment. Upon activation, STING traffics from the endoplasmic reticulum (ER) to Golgi, allowing signalling complex assembly and induction of interferon and inflammatory cytokines. Here we report that cGAMP stimulation leads to a transient decline in ER cholesterol levels, mediated by Sterol O-Acyltransferase 1-dependent cholesterol esterification. This facilitates ER membrane curvature and STING trafficking to Golgi. Notably, we identify two cholesterol-binding motifs in STING and confirm their contribution to ER-retention of STING. Consequently, depletion of intracellular cholesterol levels enhances STING pathway activation upon cGAMP stimulation. In a preclinical tumour model, intratumorally administered cholesterol depletion therapy potentiated STING-dependent anti-tumoral responses, which, in combination with anti-PD-1 antibodies, promoted tumour remission. Collectively, we demonstrate that ER cholesterol sets a threshold for STING signalling through cholesterol-binding motifs in STING and we propose that this could be exploited for cancer immunotherapy.


Assuntos
Proteínas de Membrana , Neoplasias , Humanos , Proteínas de Membrana/metabolismo , Transdução de Sinais/fisiologia , Interferons/metabolismo , Nucleotidiltransferases/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo , Retículo Endoplasmático/metabolismo , Microambiente Tumoral
18.
Aging (Albany NY) ; 16(6): 5501-5525, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38517390

RESUMO

The endoplasmic reticulum (ER) membrane protein complex (EMC) is a conserved, multi-subunit complex acting as an insertase at the ER membrane. Growing evidence shows that the EMC is also involved in stabilizing and trafficking membrane proteins. However, the structural basis and regulation of its multifunctionality remain elusive. Here, we report cryo-electron microscopy structures of human EMC in apo- and voltage-dependent anion channel (VDAC)-bound states at resolutions of 3.47 Å and 3.32 Å, respectively. We discovered a specific interaction between VDAC proteins and the EMC at mitochondria-ER contact sites, which is conserved from yeast to humans. Moreover, we identified a gating plug located inside the EMC hydrophilic vestibule, the substrate-binding pocket for client insertion. Conformation changes of this gating plug during the apo-to-VDAC-bound transition reveal that the EMC unlikely acts as an insertase in the VDAC1-bound state. Based on the data analysis, the gating plug may regulate EMC functions by modifying the hydrophilic vestibule in different states. Our discovery offers valuable insights into the structural basis of EMC's multifunctionality.


Assuntos
Retículo Endoplasmático , Canais de Ânion Dependentes de Voltagem , Humanos , Microscopia Crioeletrônica , Canais de Ânion Dependentes de Voltagem/metabolismo , Retículo Endoplasmático/metabolismo , Saccharomyces cerevisiae
19.
J Med Chem ; 67(7): 5259-5271, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38530741

RESUMO

A series of activators of GCN2 (general control nonderepressible 2) kinase have been developed, leading to HC-7366, which has entered the clinic as an antitumor therapy. Optimization resulted in improved permeability compared to that of the original indazole hinge binding scaffold, while maintaining potency at GCN2 and selectivity over PERK (protein kinase RNA-like endoplasmic reticulum kinase). The improved ADME properties of this series led to robust in vivo compound exposure in both rats and mice, allowing HC-7366 to be dosed in xenograft models, demonstrating that activation of the GCN2 pathway by this compound leads to tumor growth inhibition.


Assuntos
Proteínas Serina-Treonina Quinases , eIF-2 Quinase , Humanos , Camundongos , Ratos , Animais , Proteínas Serina-Treonina Quinases/metabolismo , eIF-2 Quinase/metabolismo , Camundongos Endogâmicos C57BL , RNA , Retículo Endoplasmático/metabolismo
20.
Cell Host Microbe ; 32(4): 588-605.e9, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38531364

RESUMO

Many powerful methods have been employed to elucidate the global transcriptomic, proteomic, or metabolic responses to pathogen-infected host cells. However, the host glycome responses to bacterial infection remain largely unexplored, and hence, our understanding of the molecular mechanisms by which bacterial pathogens manipulate the host glycome to favor infection remains incomplete. Here, we address this gap by performing a systematic analysis of the host glycome during infection by the bacterial pathogen Brucella spp. that cause brucellosis. We discover, surprisingly, that a Brucella effector protein (EP) Rhg1 induces global reprogramming of the host cell N-glycome by interacting with components of the oligosaccharide transferase complex that controls N-linked protein glycosylation, and Rhg1 regulates Brucella replication and tissue colonization in a mouse model of brucellosis, demonstrating that Brucella exploits the EP Rhg1 to reprogram the host N-glycome and promote bacterial intracellular parasitism, thereby providing a paradigm for bacterial control of host cell infection.


Assuntos
Brucella , Brucelose , Animais , Camundongos , Brucella/fisiologia , Proteômica , Brucelose/metabolismo , Retículo Endoplasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...